Siliguri Institute of Technology

Computer Science & Engineering Department Year: 2^{ND} Semester: 2^{ND} Section: A

Paper Name:Formal Language and Automata TheoryPaper Code:PCC CS 403Last Date of Submission:27th April, 2023Full Marks:25Assignment policy:

- Assignments must be submitted **in class** as hardcopy (A4 sheet) within the due date mentioned above.
- No late submissions will be allowed.
- Each question will carry 5 marks.

<u>Assignment – I</u>

- Construct a FA for the language: L = {(ab)ⁱ b^{2j} | i ≥ 1, j ≥ 1} The minimum string generated by given language is abbb where i=1 and j=1.
- 2. Convert the NFA into equivalent DFA. The transition table of the NFA is given below:

Transition table					
Present state	Next State Input				
	a	b			
->q ₀	$\{ q_{0,} q_{1} \}$	$\{ q_0 \}$			
q_1	ф	$\{ q_2 \}$			
q ₂	ф	$\{q_f\}$			
$^{*}q_{\mathrm{f}}$	ф	ф			

- 3. Construct DFA for the regular expression $r = 0 + 11 + 101^{\circ}0$
- 4. Construct a Moore Machine equivalent to the Mealy machine M given in the table:

Present		0	1	
State	Next State	Output	Next State	Output
->q1	q ₁	1	q ₂	0
q ₂	\mathbf{q}_4	1	q_4	1
q ₃	q ₂	1	q ₃	1
q ₄	q ₃	0	\mathbf{q}_1	1

5. Minimize the following Finite Automata

Transition table				
Present state	Next State Input			
	а	b		
->q ₀	q ₁	q ₃		
q_1	q_2	q_4		
q ₂	q_1	q_4		
q ₃	q ₂	q_4		
$*q_4$	q_4	q_4		